🦚
Collatz Prefixes
  • Collatz Prefixes
  • Theory
    • Introduction
    • Trajectory & Sequence
    • Exponential Canonical Form
    • Inverse Canonical Form
    • Recursive Index-Parity Tree
    • Path-Indexed Prefix Tree
      • Finding Nature
      • Parent & Child
    • Operation Table
      • Navigating
      • Testing an ECF
      • Shrinking Numbers
    • Iterative Method
Powered by GitBook
On this page
  1. Theory

Exponential Canonical Form

PreviousTrajectory & SequenceNextInverse Canonical Form

Last updated 2 years ago

CtrlK
  • Prefix
  • Bijective Mapping

Consider a Collatz trajectory of some number nnn, such as:

n→x0R0(n)→x1R(n0)→x2R(n1)→x3…→xmR(nm−1)n \xrightarrow{x_0} R_0(n) \xrightarrow{x_1} R(n_0) \xrightarrow{x_2} R(n_1) \xrightarrow{x_3} \ldots \xrightarrow{x_m} R(n_{m-1})nx0​​R0​(n)x1​​R(n0​)x2​​R(n1​)x3​​…xm​​R(nm−1​)

The Exponential Canonical Form (ECF) is a canonical representation of this trajectory, without necessarily depending on nnn. ECF is defined as a list, with elements ordered in ascending order:

{x0,x0+x1,…,x0+x1+…+xm}\{x_0, x_0 + x_1, \ldots, x_0 + x_1 + \ldots + x_m\}{x0​,x0​+x1​,…,x0​+x1​+…+xm​}

Notice that elements are in accumulated sums as we iterate the list. Alternatively, we can write the trajectory as:

n→p0R0(n)→p1−p0R(n0)→p2−p1R(n1)→p3−p2…→pm−pm−1R(nm−1)n \xrightarrow{p_0} R_0(n) \xrightarrow{p_1 - p_0} R(n_0) \xrightarrow{p_2 - p_1} R(n_1) \xrightarrow{p_3 - p_2} \ldots \xrightarrow{p_m - p_{m-1}} R(n_{m-1})np0​​R0​(n)p1​−p0​​R(n0​)p2​−p1​​R(n1​)p3​−p2​​…pm​−pm−1​​R(nm−1​)

The ECF of this trajectory is written a lot cleaner this way:

{p0,p1,p2…,pm}\{p_0, p_1, p_2\ldots, p_m\}{p0​,p1​,p2​…,pm​}

ECF of a reduced trajectory 3→03→15→413 \xrightarrow{0} 3 \xrightarrow{1} 5 \xrightarrow{4} 130​31​54​1 looks like {0,1,5}\{0, 1, 5\}{0,1,5}.

Prefix

Consider ECFs of two trajectories, {p0,p1,…,pm}\{p_0, p_1, \ldots, p_m\}{p0​,p1​,…,pm​} and {q0,q1,…,qk}\{q_0, q_1, \ldots, q_k\}{q0​,q1​,…,qk​}. The prefix of these trajectories (or ECFs) is defined as:

{ρ0,ρ1,…,ρt}\{\rho_0, \rho_1, \ldots, \rho_t\}{ρ0​,ρ1​,…,ρt​}

where ∀i:0≤i≤t\forall i : 0 \leq i \leq t∀i:0≤i≤t we have pi=qi=ρip_i = q_i = \rho_ipi​=qi​=ρi​ for largest ttt. In simpler terms, if we think of ECFs as strings, the prefix is the common prefix in both of these strings. Prefix can be an empty list, in which case we say that there is no prefix. Prefix itself is also an ECF!

For example, the sequences of 3 and 11 are as follows:

  • 3→03→15→413 \xrightarrow{0} 3 \xrightarrow{1} 5 \xrightarrow{4} 130​31​54​1 with ECF {0,1,5}\{0, 1, 5\}{0,1,5}.

  • 11→011→117→213→35→4111 \xrightarrow{0} 11 \xrightarrow{1} 17 \xrightarrow{2} 13 \xrightarrow{3} 5 \xrightarrow{4} 1110​111​172​133​54​1 with ECF {0,1,3,6,10}\{0, 1, 3, 6, 10\}{0,1,3,6,10}.

  • Their prefix is thus .

Bijective Mapping

Any ECF {p0,p1,…,pm}\{p_0, p_1, \ldots, p_m\}{p0​,p1​,…,pm​} can be represented by a unique positive integer. They are defined as follows:

2p0+2p1+…+2pm2^{p_0} + 2^{p_1} + \ldots + 2^{p_m}2p0​+2p1​+…+2pm​

The sequence of 3 was shown by ECF {0,1,5}\{0, 1, 5\}{0,1,5}, which can be represented by 35=20+21+2535 = 2^0 + 2^1 + 2^535=20+21+25.

{0,1}\{0, 1\}{0,1}