🦚
Collatz Prefixes
  • Collatz Prefixes
  • Theory
    • Introduction
    • Trajectory & Sequence
    • Exponential Canonical Form
    • Inverse Canonical Form
    • Recursive Index-Parity Tree
    • Path-Indexed Prefix Tree
      • Finding Nature
      • Parent & Child
    • Operation Table
      • Navigating
      • Testing an ECF
      • Shrinking Numbers
    • Iterative Method
Powered by GitBook
On this page
  1. Theory
  2. Operation Table

Navigating

Navigating the table

PreviousOperation TableNextTesting an ECF

Last updated 2 years ago

CtrlK
  • Changing Rows
  • Doubling
  • Appending
  • Prepending
  • Identities

There are several equations we can derive from the table, that allow various methods of navigation within the table from one cell to another. We have the following navigation methods, considering a row nnn and column ρ\rhoρ which maps to ECF {p0,p1,…,pm}\{p_0, p_1, \ldots, p_m\}{p0​,p1​,…,pm​}:

  • Changing rows: β(n,ρ)→β(n+k,ρ)\beta(n,\rho) \to \beta(n+k, \rho)β(n,ρ)→β(n+k,ρ).

  • Doubling: β(n,ρ)→β(n,2ρ)\beta(n, \rho) \to \beta(n, 2\rho)β(n,ρ)→β(n,2ρ).

  • Appending: β(n,ρ)→β(n,ρ+2q)\beta(n, \rho) \to \beta(n, \rho + 2^q)β(n,ρ)→β(n,ρ+2q) where 2q>ρ2^q > \rho2q>ρ.

  • Prepending: β(n,ρ)→β(n,ρ+1)\beta(n, \rho) \to \beta(n, \rho+1)β(n,ρ)→β(n,ρ+1) where ρ≡0 mod 2\rho \equiv 0 \bmod 2ρ≡0mod2.

Changing Rows

Consider β(n,ρ)\beta(n,\rho)β(n,ρ) and β(n+k,ρ)\beta(n+k,\rho)β(n+k,ρ) with ρ\rhoρ being the ECF {p0,p1,…,pm}\{p_0, p_1, \ldots, p_m\}{p0​,p1​,…,pm​}.

n=β(n,ρ)2pm3m−2pm−13m−2pm−23m−1−…−2p132−2p031n = \beta(n, \rho)\frac{2^{p_{m}}}{3^{m}} - \frac{2^{p_{m-1}}}{3^{m}} - \frac{2^{p_{m-2}}}{3^{m-1}} - \ldots - \frac{2^{p_1}}{3^2} - \frac{2^{p_0}}{3^1}n=β(n,ρ)3m2pm​​−3m2pm−1​​−3m−12pm−2​​−…−322p1​​−312p0​​
n+k=β(n+k,ρ)2pm3m−2pm−13m−2pm−23m−1−…−2p132−2p031n+k = \beta(n+k, \rho)\frac{2^{p_{m}}}{3^{m}} - \frac{2^{p_{m-1}}}{3^{m}} - \frac{2^{p_{m-2}}}{3^{m-1}} - \ldots - \frac{2^{p_1}}{3^2} - \frac{2^{p_0}}{3^1}n+k=β(n+k,ρ)3m2pm​​−3m2pm−1​​−3m−12pm−2​​−…−322p1​​−312p0​​

Almost all the terms on the right hand-side are equal, expect the leftmost term. When we subtract the first equation from the second we get:

k=(β(n+k,ρ)−β(n,ρ))2pm3mk = (\beta(n + k, \rho) - \beta(n, \rho))\frac{2^{p_m}}{3^m}k=(β(n+k,ρ)−β(n,ρ))3m2pm​​

So, the difference between two cells in the same column have a really neat formula:

β(n+k,ρ)=β(n,ρ)+3m2pm(k)\beta(n + k, \rho) = \beta(n, \rho) +\frac{3^{m}}{2^{p_m}}(k)β(n+k,ρ)=β(n,ρ)+2pm​3m​(k)

Doubling

Going from β(n,ρ)\beta(n, \rho)β(n,ρ) to β(n,2ρ)\beta(n,2\rho)β(n,2ρ) is also easy to calculate. Let us write down their ICFs:

n=β(n,ρ)2pm3m−2pm−13m−2pm−23m−1−…−2p132−2p031n = \beta(n, \rho)\frac{2^{p_{m}}}{3^{m}} - \frac{2^{p_{m-1}}}{3^{m}} - \frac{2^{p_{m-2}}}{3^{m-1}} - \ldots - \frac{2^{p_1}}{3^2} - \frac{2^{p_0}}{3^1}n=β(n,ρ)3m2pm​​−3m2pm−1​​−3m−12pm−2​​−…−322p1​​−312p0​​
n=β(n,2ρ)2pm+13m−2pm−1+13m−2pm−2+13m−1−…−2p1+132−2p0+131n = \beta(n, 2\rho)\frac{2^{p_{m}+1}}{3^{m}} - \frac{2^{p_{m-1}+1}}{3^{m}} - \frac{2^{p_{m-2}+1}}{3^{m-1}} - \ldots - \frac{2^{p_1+1}}{3^2} - \frac{2^{p_0+1}}{3^1}n=β(n,2ρ)3m2pm​+1​−3m2pm−1​+1​−3m−12pm−2​+1​−…−322p1​+1​−312p0​+1​

When we subtract the first equation from the second, we get:

0=(2β(n,2ρ)−β(n,ρ))2pm3m−2pm−13m−2pm−23m−1−…−2p132−2p0310 = \left(2\beta(n, 2\rho)-\beta(n, \rho)\right)\frac{2^{p_m}}{3^m} - \frac{2^{p_{m-1}}}{3^{m}} - \frac{2^{p_{m-2}}}{3^{m-1}} - \ldots - \frac{2^{p_1}}{3^2} - \frac{2^{p_0}}{3^1}0=(2β(n,2ρ)−β(n,ρ))3m2pm​​−3m2pm−1​​−3m−12pm−2​​−…−322p1​​−312p0​​
0=(2β(n,2ρ)−β(n,ρ))2pm3m+n−β(n,ρ)2pm3m0 = \left(2\beta(n, 2\rho)-\beta(n, \rho)\right)\frac{2^{p_m}}{3^m} + n - \beta(n, \rho)\frac{2^{p_m}}{3^m}0=(2β(n,2ρ)−β(n,ρ))3m2pm​​+n−β(n,ρ)3m2pm​​
(β(n,ρ)−β(n,2ρ))2pm+13m=n\left(\beta(n, \rho)-\beta(n, 2\rho)\right)\frac{2^{p_m+1}}{3^m} = n(β(n,ρ)−β(n,2ρ))3m2pm​+1​=n

Finally, we can find the difference as:

β(n,2ρ)=β(n,ρ)−3m2pm(n2)\beta(n, 2\rho) = \beta(n, \rho) - \frac{3^m}{2^{p_m}}\left(\frac{n}{2}\right)β(n,2ρ)=β(n,ρ)−2pm​3m​(2n​)

Appending

Consider ρ\rhoρ as the ECF {p0,p1,…,pm}\{p_0, p_1, \ldots, p_m\}{p0​,p1​,…,pm​} for some number nnn. Then, consider another ECF {p0,p1,…,pm,q}\{p_0, p_1, \ldots, p_m, q\}{p0​,p1​,…,pm​,q} where q>pmq > p_mq>pm​ again for number nnn. Note that this ECF maps to ρ+2q\rho+2^qρ+2q.

Well, this is equivalent to continuing a trajectory, as in doing an imprecise reduced Collatz functionR(β(n,ρ),q−pm)\mathcal{R}(\beta(n, \rho), q-p_m)R(β(n,ρ),q−pm​). In short:

β(n,ρ+2q)=3β(n,ρ)+12q−pm\beta(n, \rho+2^q) = \frac{3\beta(n, \rho)+1}{2^{q-p_m}}β(n,ρ+2q)=2q−pm​3β(n,ρ)+1​

Prepending

Consider ρ\rhoρ as the ECF {p0,p1,…,pm}\{p_0, p_1, \ldots, p_m\}{p0​,p1​,…,pm​}. This time, suppose that p0>qp_0 > qp0​>q; and consider another ECF {q,p0,p1,…,pm}\{q, p_0, p_1, \ldots, p_m\}{q,p0​,p1​,…,pm​} which maps to ρ+2q\rho+2^qρ+2q. Let us look at the ICFs of these for number nnn.

n=β(n,ρ)2pm3m−2pm−13m−2pm−23m−1−…−2p132−2p031n = \beta(n, \rho)\frac{2^{p_{m}}}{3^{m}} - \frac{2^{p_{m-1}}}{3^{m}} - \frac{2^{p_{m-2}}}{3^{m-1}} - \ldots - \frac{2^{p_1}}{3^2} - \frac{2^{p_0}}{3^1}n=β(n,ρ)3m2pm​​−3m2pm−1​​−3m−12pm−2​​−…−322p1​​−312p0​​
n=β(n,ρ+2q)2pm+q3m+1−2pm−1+q3m+1−2pm−2+q3m−…−2p1+q33−2p0+q32−2q31n = \beta(n, \rho + 2^q)\frac{2^{p_{m}+q}}{3^{m+1}} - \frac{2^{p_{m-1}+q}}{3^{m+1}} - \frac{2^{p_{m-2}+q}}{3^{m}} - \ldots - \frac{2^{p_1+q}}{3^3} - \frac{2^{p_0+q}}{3^2} - \frac{2^q}{3^1}n=β(n,ρ+2q)3m+12pm​+q​−3m+12pm−1​+q​−3m2pm−2​+q​−…−332p1​+q​−322p0​+q​−312q​

Lets do a 3n2q+13\frac{n}{2^q}+132qn​+1 operation on the second equation:

3n2q+1=β(n,ρ+2q)2pm3m−2pm−13m−2pm−23m−1−…−2p132−2p0313\frac{n}{2^q}+1 = \beta(n, \rho+2^q)\frac{2^{p_{m}}}{3^{m}} - \frac{2^{p_{m-1}}}{3^{m}} - \frac{2^{p_{m-2}}}{3^{m-1}} - \ldots - \frac{2^{p_1}}{3^2} - \frac{2^{p_0}}{3^1}32qn​+1=β(n,ρ+2q)3m2pm​​−3m2pm−1​​−3m−12pm−2​​−…−322p1​​−312p0​​

Now, we subtract the first equation from this new equation:

3n2q+1−n=(β(n,ρ+2q)−β(n,ρ))2pm3m3\frac{n}{2^q}+1-n = (\beta(n, \rho+2^q) - \beta(n, \rho))\frac{2^{p_m}}{3^m}32qn​+1−n=(β(n,ρ+2q)−β(n,ρ))3m2pm​​

This finally gives us:

β(n,ρ+2q)=β(n,ρ)+3m2pm(3n2q+1−n)\beta(n, \rho+2^q) = \beta(n, \rho) + \frac{3^m}{2^{p_m}}(3\frac{n}{2^q}+1-n)β(n,ρ+2q)=β(n,ρ)+2pm​3m​(32qn​+1−n)

For q=0q = 0q=0 we get a nice result:

β(n,ρ+1)=β(n,ρ)+3m2pm(2n+1)\beta(n, \rho+1) = \beta(n, \rho) + \frac{3^m}{2^{p_m}}(2n+1)β(n,ρ+1)=β(n,ρ)+2pm​3m​(2n+1)

Identities

To summarize all of these navigation methods for some number nnn with ECF ρ\rhoρ that maps to {p0,p1,…,pm}\{p_0, p_1, \ldots, p_m\}{p0​,p1​,…,pm​}:

Operation
Equation
Condition

Changing Rows

-

Doubling

-

Appending

Prepending

Looking at the table, we may connect some navigation methods together and obtain cool identity functions!

For n≡0 mod 2n \equiv 0 \bmod 2n≡0mod2 we have:

β(n/2,ρ)=β(n,2ρ)\beta(n/2,\rho)=\beta(n,2\rho)β(n/2,ρ)=β(n,2ρ)

For ρ≡0 mod 2\rho \equiv 0 \bmod 2ρ≡0mod2 we have:

β(3n+1,ρ)=β(n,ρ+1)\beta(3n+1, \rho)=\beta(n, \rho+1)β(3n+1,ρ)=β(n,ρ+1)

With the first identity, we can also derive for k∈Nk \in \mathbb{N}k∈N:

β(1,ρ)=β(2k,2kρ)\beta(1, \rho) = \beta(2^k, 2^k\rho)β(1,ρ)=β(2k,2kρ)
β(n+k,ρ)=β(n,ρ)+3m2pm(k)\beta(n + k, \rho) = \beta(n, \rho) +\frac{3^{m}}{2^{p_m}}(k)β(n+k,ρ)=β(n,ρ)+2pm​3m​(k)
β(n,2ρ)=β(n,ρ)−3m2pm(n2)\beta(n, 2\rho) = \beta(n, \rho) - \frac{3^m}{2^{p_m}}\left(\frac{n}{2}\right)β(n,2ρ)=β(n,ρ)−2pm​3m​(2n​)
β(n,ρ+2q)=3β(n,ρ)+12q−pm\beta(n, \rho+2^q) = \frac{3\beta(n, \rho)+1}{2^{q-p_m}}β(n,ρ+2q)=2q−pm​3β(n,ρ)+1​
2q>ρ2^q > \rho2q>ρ
β(n,ρ+1)=β(n,ρ)+3m2pm(2n+1)\beta(n, \rho+1) = \beta(n, \rho) + \frac{3^m}{2^{p_m}}(2n+1)β(n,ρ+1)=β(n,ρ)+2pm​3m​(2n+1)
ρ≡0 mod 2\rho \equiv 0 \bmod 2ρ≡0mod2