🦚
Collatz Prefixes
  • Collatz Prefixes
  • Theory
    • Introduction
    • Trajectory & Sequence
    • Exponential Canonical Form
    • Inverse Canonical Form
    • Recursive Index-Parity Tree
    • Path-Indexed Prefix Tree
      • Finding Nature
      • Parent & Child
    • Operation Table
      • Navigating
      • Testing an ECF
      • Shrinking Numbers
    • Iterative Method
Powered by GitBook
On this page
  1. Theory

Introduction

Preliminaries on the Collatz Conjecture.

PreviousCollatz PrefixesNextTrajectory & Sequence

Last updated 2 years ago

CtrlK

Collatz function F:N→NF : \mathbb{N} \to \mathbb{N}F:N→N defined as:

F(n)={3n+1n≡1 mod 2n2n≡0 mod 2F(n) = \begin{cases} 3n+1 & n \equiv 1 \bmod 2 \\ \frac{n}{2} & n \equiv 0 \bmod 2\end{cases}F(n)={3n+12n​​n≡1mod2n≡0mod2​

The problem asks whether ∃j∈N,∀n∈N:Fj(n)=1\exists j \in \mathbb{N},\forall n \in \mathbb{N} : F^j(n) = 1∃j∈N,∀n∈N:Fj(n)=1. We still don't know if this is true (since 1937), but it is conjectured to be so by many. In this work, we will approach the problem in two ways:

  • Using binary trees to hope for a proof-by-contradiction opportunity

  • Extending the operation to real numbers and analyzing patterns

Reducing to Odd Numbers

It is immediate to observe that showing the conjecture of odd numbers suffices; even numbers eventually reduce to odd numbers via n/2n/2n/2. For this purpose, we have the following two functions:

  • Reduced Collatz function R:O→OR : \mathbb{O} \to \mathbb{O}R:O→O defined as:

R(n)=3n+12xR(n) = \frac{3n+1}{2^{x}}R(n)=2x3n+1​

where xxx is the largest number such that result is an odd number.

  • Reduced Collatz Initializer function R0:N→OR_0 : \mathbb{N} \to \mathbb{O}R0​:N→O defined as:

R0(n)=n2xR_0(n) = \frac{n}{2^x}R0​(n)=2xn​

where xxx is the largest number such that result is an odd number.