🦚
Collatz Prefixes
  • Collatz Prefixes
  • Theory
    • Introduction
    • Trajectory & Sequence
    • Exponential Canonical Form
    • Inverse Canonical Form
    • Recursive Index-Parity Tree
    • Path-Indexed Prefix Tree
      • Finding Nature
      • Parent & Child
    • Operation Table
      • Navigating
      • Testing an ECF
      • Shrinking Numbers
    • Iterative Method
Powered by GitBook
On this page
  1. Theory

Operation Table

From natural numbers to real numbers.

PreviousParent & ChildNextNavigating

Last updated 2 years ago

CtrlK
  • Imprecise Trajectories
  • Brute Operation

There is also an alternative approach to analyzing trajectories which we refer to as the operational approach. Recall the functions RRR and R0R_0R0​ from the Introduction chapter.

These were defined for the natural number domain and odd number range. Now, we will introduce their brute versions, which take a real number input instead and output a real number. The xxx parameter that was well-defined in the prior functions, is now given explicitly; and it does not respect whether the resulting number is an integer or not; hence the name "brute".

  • Brute Reduced Collatz function R:R×N→R\mathcal{R}:\mathbb{R} \times \mathbb{N} \to \mathbb{R}R:R×N→R is defined as:

R(n,x)=3n+12x\mathcal{R}(n, x) = \frac{3n+1}{2^{x}}R(n,x)=2x3n+1​
  • Brute Reduced Collatz Initializer function R0:R×N→R\mathcal{R}_0 : \mathbb{R} \times \mathbb{N} \to \mathbb{R}R0​:R×N→R is defined as:

R0(n,x)=n2x\mathcal{R}_0(n, x) = \frac{n}{2^x}R0​(n,x)=2xn​

Since xxx is given explicitly, we can give "wrong" parameters and end up with non-integer results. That is what makes these functions imprecise.

Imprecise Trajectories

For an ECF {p0,p1,…,pm}\{p_0, p_1, \ldots, p_m\}{p0​,p1​,…,pm​}, consider the imprecise trajectory starting from some number nnn:

n→p0R0(n,p0)→p1−p0R(n0,p1−p0)→p2−p1…→pm−pm−1R(nm−1,pm−pm−1)n \xrightarrow{p_0} \mathcal{R}_0(n, p_0) \xrightarrow{p_1 - p_0} \mathcal{R}(n_0, p_1 - p_0) \xrightarrow{p_2 - p_1} \ldots \xrightarrow{p_m - p_{m-1}} \mathcal{R}(n_{m-1}, p_m - p_{m-1})np0​​R0​(n,p0​)p1​−p0​​R(n0​,p1​−p0​)p2​−p1​​…pm​−pm−1​​R(nm−1​,pm​−pm−1​)

The notation is similar to what we have done in the Trajectory chapter:

  • n0=R0(n,p0)n_0 = \mathcal{R}_0(n, p_0)n0​=R0​(n,p0​)

  • ni=R(ni−1,pi−pi−1)n_i = \mathcal{R}(n_{i-1}, p_i - p_{i-1})ni​=R(ni−1​,pi​−pi−1​)

ICF is defined exactly the same way for imprecise trajectories too! This makes it a really powerful tool, which we will soon make use of.

Brute Operation

Define β:N×N→R\beta : \mathbb{N} \times \mathbb{N} \to \mathbb{R}β:N×N→R as follows:

  • Consider an ECF {p0,p1,…,pm}\{p_0, p_1, \ldots, p_m\}{p0​,p1​,…,pm​}, and its bijective map that is ρ=2p0+2p1+…+2pm\rho = 2^{p_0} + 2^{p_1} + \ldots + 2^{p_m}ρ=2p0​+2p1​+…+2pm​.

  • Consider the imprecise trajectory that is defined by this ECF and the starting number is nnn:

n→p0R0(n,p0)→p1−p0R(n0,p1−p0)→p2−p1…→pm−pm−1R(nm−1,pm−pm−1)n \xrightarrow{p_0} \mathcal{R}_0(n, p_0) \xrightarrow{p_1 - p_0} \mathcal{R}(n_0, p_1 - p_0) \xrightarrow{p_2 - p_1} \ldots \xrightarrow{p_m - p_{m-1}} \mathcal{R}(n_{m-1}, p_m - p_{m-1})np0​​R0​(n,p0​)p1​−p0​​R(n0​,p1​−p0​)p2​−p1​​…pm​−pm−1​​R(nm−1​,pm​−pm−1​)
  • As per our definition, the terminating number here is denoted as nmn_mnm​.

  • The function is then defined as β(n,ρ)=nm\beta(n, \rho) = n_mβ(n,ρ)=nm​.

Here is how the first 10 numbers look like in the operation table for β\betaβ:

β      1    2     3     4     5     6      7      8      9     10
1    1.0* 0.5   2.0  0.25  1.00* 1.25   3.50  0.125  0.500  0.625
2    2.0  1.0*  3.5  0.50  1.75  2.00   5.75  0.250  0.875  1.000*
3    3.0  1.5   5.0  0.75  2.50  2.75   8.00  0.375  1.250  1.375
4    4.0  2.0   6.5  1.00* 3.25  3.50  10.25  0.500  1.625  1.750
5    5.0  2.5   8.0  1.25  4.00  4.25  12.50  0.625  2.000  2.125
6    6.0  3.0   9.5  1.50  4.75  5.00  14.75  0.750  2.375  2.500
7    7.0  3.5  11.0  1.75  5.50  5.75  17.00  0.875  2.750  2.875
8    8.0  4.0  12.5  2.00  6.25  6.50  19.25  1.000* 3.125  3.250
9    9.0  4.5  14.0  2.25  7.00  7.25  21.50  1.125  3.500  3.625
10  10.0  5.0  15.5  2.50  7.75  8.00  23.75  1.250  3.875  4.000

If the cell contains 1, then the corresponding column ρ\rhoρ actually represents the ECF that is of the Collatz sequence of nnn. That is awesome, because you can immediately learn the sequence just by looking at the table.

There are many ways we can analyze the table, see the following links:

Navigating
Testing an ECF
Shrinking Numbers